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Learning with regularizers in multilayer neural networks

David Saad and Magnus Rattray
Department of Computer Science and Applied Mathematics, Aston University, Birmingham, B4 7ET, United Kingdom

~Received 29 September 1997!

We study the effect of regularization in an on-line gradient-descent learning scenario for a general two-layer
student network with an arbitrary number of hidden units. Training examples are randomly drawn input vectors
labeled by a two-layer teacher network with an arbitrary number of hidden units that may be corrupted by
Gaussian output noise. We examine the effect of weight decay regularization on the dynamical evolution of the
order parameters and generalization error in various phases of the learning process, in both noiseless and noisy
scenarios.@S1063-651X~98!13102-1#

PACS number~s!: 87.10.1e, 02.50.2r, 05.90.1m
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I. INTRODUCTION

One of the most powerful and commonly used metho
for training large layered neural networks is that of on-li
learning, whereby the internal network parameters$J‰ are
modified after the presentation of each training example
as to minimize the corresponding error. The goal is to br
the mapf J implemented by the network as close as poss
to a desired mapf̃ that generates the examples. Here
focus on the learning of continuous maps via gradient
scent on a differentiable error function.

Recent work@1–5# provides a powerful tool for the analy
sis of gradient-descent learning in a very general learn
scenario@6#: that of astudentnetwork withN input units,K
hidden units, and a single linear output unit, trained to imp
ment a continuous map from anN-dimensional input spacej
onto a scalarz. Examples of the target taskf̃ are in the form
of input-output pairs (j m,zm). The output labelzm for each
independently drawn inputjm is provided by ateachernet-
work of similar architecture, except that its numberM of
hidden units is not necessarily equal toK.

Here we consider the effect of regularization on the lea
ing process in the form of weight decay, for both noisele
learning and the case where a noise process corrupts
teacher output. Learning from corrupted examples is a r
istic and frequently encountered scenario and is commo
handled by some sort of regularization. Previous analysi
noisy training scenarios and the application of regularizat
have been based on various approaches: Bayesian@7#, equi-
librium statistical physics@8#, and nonequilibrium technique
for analyzing learning dynamics@9#. Here we adapt our pre
viously formulated techniques@2# to investigate the effect o
different noise mechanisms on the dynamical evolution
the learning process and the resulting generalization abi

II. MODEL

We focus on asoft committee machine@1#, for which all
hidden-to-output weights are positive and of unit streng
Consider the student network: Hidden uniti receives infor-
mation from input unitr through the weightJir , and its
activation under presentation of an input patte
j5(j1 , . . . ,jN)T is xi5Ji•j, with Ji5(Ji1 , . . . ,JiN)T de-
fined as the vector of incoming weights to thei th hidden
571063-651X/98/57~2!/2170~7!/$15.00
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unit. The output of the student network
s(J,j)5( i 51

K g(Ji•j), whereg is the activation function of
the hidden units, taken here to be the error funct
g(x)[erf(x/A2), and J[$Ji%1< i<K is the set of input-to-
hidden adaptive weights.

The components of the input vectorsj m are uncorrelated
random variables with zero mean and unit variance. Out
labelszm are provided by a teacher network of similar arch
tecture: Hidden unitn in the teacher network receives inp
information through the weight vectorBn5(Bn1 , . . . ,BnN)T

and its activation under presentation of the input patternj m

is yn
m5Bn•j m. In the noiseless case the teacher outpu

given byz0
m5(n51

M g(Bn•j m).
The error made by a student with weightsJ on a given

input j is given by the quadratic deviation

e~J,j,z0![
1

2
@s~J,j!2z0#25

1

2F(
i 51

K

g~xi !2 (
n51

M

g~yn!G2

,

~1!

measured here with respect to the noiseless teacher~we will
also consider teachers corrupted by output noise, in wh
case deviations are with respect to the actual noisy outputz).
The performance on a typical input in the absence of no
defines the generalization erroreg(J)[^e(J,j,z0)&$j% ,
through an average over all possible input vectorsj to be
performed implicitly through averages over the activatio
x5(x1 , . . . ,xK)T and y5(y1 , . . . ,yM)T. These averages
can be performed analytically@2# and result in a compac
expression foreg in terms oforder parameters: Qik[Ji•Jk ,
Rin[Ji•Bn , and Tnm[Bn•Bm , which represent student
student, student-teacher, and teacher-teacher overlaps
spectively. The parametersTnm are characteristic of the tas
to be learned and remain fixed during training, while t
overlapsQik among student hidden units andRin between
student and teacher hidden units are determined by the
dent weightsJ and evolve during training.

A gradient descent rule for the update of student weig
results in Ji

m115Ji
m1 (h/N) d i

mj m, where the learning
rate h has been scaled with the input sizeN, and
d i

m[g8(xi
m)@(n51

M g(yn
m)2( j 51

K g(xj
m)#. The time evolution
2170 © 1998 The American Physical Society
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57 2171LEARNING WITH REGULARIZERS IN MULTILAYER . . .
FIG. 1. Order parameter’s evolution for low weight decayg50.005 @(a),(c), and (d) g̃, g̃max# and high weight decayg50.007

@(b) g̃. g̃max# for a noiseless scenario withK5M53 andh50.2. ~a! and~b! show the evolution of student vector lengths and overlaps
~c! and ~d! the overlaps between student and teacher vectors and the evolution of the generalization error, respectively.
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of the overlapsRin and Qik can be written in terms of dif-
ference equations. We consider the large-N limit and intro-
duce a normalized number of examplesa5m/N to be inter-
preted as a continuous time variable in theN→` limit. The
time evolution ofRin andQik is thus described in terms of
coupled set of first-order differential equations@2#.

III. EFFECT OF REGULARIZERS

A common method to overcome the effects of noise a
parameter redundancy, frequently used in real world train
scenarios, is the use of regularizers such as weight de
@10#. The role of regularizers has been analyzed for lin
perceptrons@11–13# and optimal values for regularizers hav
been calculated. However, the efficacy of regularizers
on-line learning in multilayer networks is still somewhat u
clear. The effect of weight decay on the training equation
the subtraction of a term (g/N) Ji

m in each weight update
The difference equation forJi

m becomes

Ji
m115Ji

m1
h

N
d i

mj m2
g

N
Ji

m ~2!
d
g
ay
r

r

is

and the resulting equations of motion for the student-teac
and student-student overlaps are given in this case by

dRin

da
5hf in2gRin ,

~3!

dQik

da
5hc ik1h2y ik22gQik ,

where f in[^d i yn&$j% , c ik[^d ixk1dkxi&$j%, and
y ik[^d idk&$j% . The explicit expressions@2# for f in , c ik ,
y ik , andeg depend exclusively on the overlapsQ, R, andT.
The only difference from the expressions in Ref.@2# is due to
the presence of the weight decay terms. These equations
be solved numerically as demonstrated in Fig. 1 for the
alizable training scenario ofM5K53, h50.2, and an iso-
tropic teacher (Tnm5dnm). The basic features of the dynam
ics for both noisy and noiseless learning exist here, i.e
short transient followed by a prolonged symmetric pha
characterized by lack of differentiation between differe
nodes of the student, specialization, as each student n
begins to emulate a particular teacher node, and finally c
vergence to asymptotic values. The weight decay applie
this caseg50.005 @Figs. 1~a!, 1~c!, and 1~d!# has a negli-
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FIG. 2. Weight decay and trapping in the symmetric phase.~a! Modification of the eigenvalue controlling the escape from the symme
phase due to weight decaylg as a function ofK. ~b! Maximal weight decay as a function ofK.
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gible effect on the location of the fixed point in the symm
ric phase and on the value of the generalization error th
however, it does affect the length of the symmetric pha
the convergence phase, and the asymptotic values of th
der parameters and generalization error. The asymptotic
ues of the generalization error, the cross correlation betw
vectors related to different nodes (QiÞk), and overlaps be-
tween student vectors and teacher vectors imitated by di
ent student vectors (RiÞn) increase with the weight decayg,
while the length of the teacher vectors (Qii ) and overlaps
between student vectors and teacher vectors imitated
them (Rii ) decrease. Moreover, above a certain weight de
valuegmax the system is trapped indefinitely in the symm
ric subspace as shown in Fig. 1~b!, for the student overlaps
where a weight decay ofg50.007 is used. These effects w
be analyzed in the following sections, although we are li
ited to the consideration of small learning rates. A differe
approach is introduced in Sec. IV, which allows us to det
mine the optimal weight decay as a function of time f
arbitrary learning rates. We first attempt to derive analyti
results for the dynamical behavior during each phase
learning, with a constant weight decay parameter. For s
plicity we will concentrate here on a noiseless, realiza
learning scenario (M5K) with an isotropic teache
(T5dnm).

A. Symmetric phase

Introducing weight decay modifies the fixed point duri
the symmetric phase. Following@2#, we reduce the dimen
sion of the system by exploiting symmetries in the dynam
that exist for realizable, isotropic learning
Qik5Qd ik1C(12d ik) and Rin5Rd in1S(12d in), where
each student node index coincides with that of the teac
node to which it will eventually specialize. One can th
calculate the location of the symmetric fixed point, for sm
learning rates and small values of the regularization par
eter, by truncating Eqs.~3! to first order inh and expanding
with respect tog̃5g/h, regarding the solution with weigh
decay as a small perturbation around theg50 result,
S* 5R* 51/AK(2K21) and Q* 5C* 51/(2K21). Solv-
ing the truncated equations results in the following expr
sions for the new fixed point and generalization error (S5R
at the symmetric fixed point!:
-
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R* 5
1

AK~2K21!
2

~2K11!3/2~4K227K12!

pK7/2~2K21!~2K23!
g̃ ,

Q* 5
1

2K21
2

2~2K11!3/2~4K226K11!

p~2K21!3/2~2K23!K2
g̃ ,

~4!

C* 5
1

2K21
1

2~2K11!3/2

p~2K21!3/2~2K23!K2
g̃ ,

eg* 5
K

p Fp6 2K arcsinS 1

2K D G .
It is interesting to note that weight decay does not modify
generalization error to first order ing̃ . For the case shown in
Fig. 1~a!, 1~c!, and 1~d! (g50.005) we evaluated the over
laps and the generalization error to obtainR* 50.2564,
Q* 50.1908, andC* 50.2005, in close agreement with th
result presented above.

A significant difference of the dynamics without weig
decay is a notable reduction in the gap between the value
Q andC in the symmetric phase, which may be attributed
the suppression of excessive vector length by the weight
cay mechanism. This inevitably leads to higher similar
between student vectors and a delay in leaving the symm
phase.

To investigate the effect of weight decay on the length
the symmetric phase we expanded the truncated dynam
equations, derived from Eqs.~3!, around the fixed point
$R* ,S* ,Q* ,C* % to obtain the eigenvalues that control th
dynamics of the system and escape from the symme
phase. The dynamical evolution described by the lineari
equations of motion is characterized by three eigenvalu
one of which,l5l01lgg̃ , is positive and controls the es
cape, where

lg52
p

2

16K5216K4236K3122K2113K28

2K2~2K11!~2K21!~2K23!

and l0 is the eigenvalue obtained for the dynamics in t
absence of weight decay@2#. The dependence oflg on the
number of hidden unitsK is shown in Fig. 2~a!, approaching
the asymptotic value of2p/2 asK→`. The dependence on
the weight decay is negative, suppressing the eigenvalue
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FIG. 3. Asymptotic values for the overlaps in the caseK5M53 andh50.2 for various weight decay levels:~a! predicted values forR
andQ ~lines! against actual values obtained numerically~squares and triangles! and~b! predicted values forS andC ~lines! against actual
values~squares and triangles!.
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sponsible for escape from the symmetric phase. The sys
will escape from the symmetric phase for weight decay v
ues lower thang̃max, where

g̃max5
8K3A2K21~2K23!

p2A2K11~16K5216K4236K3122K2113K28!
,

for which l50. The dependence ofgmax on the number of
hidden unitsK is shown in Fig. 2~b!, which decays asymp
totically as 1/Kp2. For the conditions of Fig. 1, i.e.
K5M53 and h50.2, the maximal weight decay i
hg̃max50.006, in agreement with the numerical solutio
shown there.

This analysis has been carried out for the case of sm
learning rate, which is most easily amenable to analy
However, the more realistic case of largerh ~which includes,
for example, the optimal learning rate! is characterized by a
different behavior with respect tog. Analysing the large-h
case requires different tools and will be discussed in Sec.

B. Asymptotic regime

Asymptotically, in the realizable noiseless case with
weight decay, the secondary overlapsS andC decay to zero
while R andQ approach unity, indicating full alignment fo
an isotropic task (Tnm5dnm). We observe that in the pres
ence of weight decay the student vectors converge
asymptotic values that are shorter than the teacher vec
Qii→Q`,1, and acquire a positive correlation with ea
other. Shorter norms for the student vectors result in a la
asymptotic generalization error.

The asymptotic phase is characterized by a fixed p
solution with R* ÞS* . The coordinates of the asymptot
fixed point can also be obtained analytically in the smalh
approximation:R* 511 g̃ r a , S* 52 g̃ sa , Q* 511 g̃qa ,
andC* 52 g̃ca , with

r a5
12p~918A3!~3K2612A3!

111K2159156A3
,

sa5
18p~918A3!

111K2159156A3
, qa52r a , ca52sa .

The asymptotic generalization error vanishes for the first
der in g. Expanding the asymptotic order parameters to s
ond order ing, one obtains for leading order inh
m
l-
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eg* 5
6p~918A3!~3K2612A3! g̃ 2K

~111K2159156A3!
. ~5!

To examine the accuracy of the results we plotted
predicted asymptotic values for the caseK5M53 and
h50.2 for various weight decay levels against the act
values obtained numerically as shown in Fig. 3: Fig 3~a!
shows predicted values forR and Q against actual values
obtained numerically, while Fig. 3~b! presents predicted val
ues forS andC against actual values. The results presen
in Fig. 3 show that the approximation for the asympto
values forR, Q, S, andC is very accurate for low weigh
decay values. Similarly, the predicted asymptotic value
the generalization error is in reasonable agreement with
numerical result; e.g., the asymptotic generalization er
calculated forK5M53, h50.2, andg50.005 shows a
value of eg* 50.0193 in comparison to the numerical resu
eg* 50.0169.

C. Noisy examples and redundant parameters

From the analysis of the role played by the weight dec
in the linear perceptron one would expect the weight de
to alleviate the problem of noise@11,12# and to suppress
redundant parameters@13#, reducing the generalization erro
We therefore examined the effect of weight decay on vari
learning scenarios in which training examples are corrup
by noise and in the presence of redundant weights, for sm
and intermediate learning rates. Our numerical and analyt
investigations have revealed no scenario, either when tr
ing from noisy data or in the presence of redundant para
eters, where afixed weight decay improves the system pe
formance in the long run or speeds up the training proce
For the asymptotic regime, especially in the case of noise
systems with redundant units, this is probably a generic f
ture of on-line learning with an infinite data set, due to t
absence of the numerous minima in the mean error surf
which might be caused by a finite training set~i.e., the mean
error surface is the generalization error in our case!. In off-
line ~batch! learning, or on-line learning with recycled pa
terns, regularization may lead to improved performan
through the modification of the error surface.

To demonstrate the effect of weight decay on the evo
tion of the generalization error in the case of corrupted
amples and in the presence of redundant parameters
show in Fig. 4 two typical training scenarios where weig
decay has been applied. We consider additive Gaussian
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FIG. 4. Effect of weight decay on the evolution of the generalization error in two training scenarios:~a! where examples are corrupte
by output noise of zero mean and variances250.1, in which caseM5K53, the learning rate used ish50.2, and the weight decay value
vary betweeng50.001 and 0.003, and~b! in a highly redundant~overrealizable! training scenario withM53, K55, andh50.2.
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zm5rm1(n51

K g(Bn•j m), where the random variablerm is
taken to be Gaussian with zero mean and variances2.

The example shown in Fig. 4~a! represents a training sce
nario wereM5K53 and examples are corrupted by Gau
ian output noise with variances250.1. It is clear that em-
ploying weight decay, withg50.001–0.003 in this example
has only increased the asymptotic generalization error
delayed the breaking away from the symmetric phase.
slight increase in generalization error during the symme
phase is due to higher-order effects, which are not analy
in this paper. Similar results have been obtained for differ
types and levels of noise and weight decay, including wei
decay that varies in time according to hand-crafted sch
ules.

Figure 4~b! shows an overrealizable training scenario
which a student with five hidden nodes is trained on unc
rupted examples generated by a three-node teacher.
learning rate in this case ish50.2. Again it is clear that
optimal performance is achieved with no regularizers.

Both these simulations used a rather low value for
learning rate, significantly lower than the optimal setting.
the next section we observe how the behavior of weight
cay is significantly different during the symmetric phase
larger learning rates.

IV. GLOBALLY OPTIMAL WEIGHT DECAY

In the previous sections we have been limited to us
fixed or hand-crafted weight decay terms that restrict
ability to assess the potential contribution of general wei
decay terms as only a limited number of conditions can
examined. In this section we take a different approach, a
ing at global optimization of a time-dependent weight dec
term on the basis of previous work on globally optimal lea
ing rates@14# and learning rules@15#.

An optimal learning scenario with respect to some para
eter~hereg) in a certain time window@a0 ,a1# corresponds
to the largest decrease in generalization error betw
these two times; i.e., we attempt to minimiz
Deg5eg(a1)2eg(a0), which may be written as an integra
of the form:

Deg5E
a0

a1deg

da
da. ~6!
-

d
e
c
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t
t

d-

r-
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e

-
r

g
r
t
e
-

y
-

-

n

Since the generalization error depends exclusively on
overlapsQ, R, andT, for which the dynamical equations ar
known, one can rewrite the integrandL5 deg /da as

L5(
i ,n

]eg

]Rin

dRin

da
1(

i ,k

]eg

]Qik

dQik

da

2(
i ,n

m inS dRin

da
2hf in1gRinD

2(
i ,k

n ikS dQik

da
2hc ik2h2y ik12gQikD . ~7!

The last two right-hand terms in Eq.~7! force the correct
dynamics using sets of Lagrange multipliersm in andn ik for
the corresponding equationsdRin /da anddQik /da.

Using variational techniques, it is straightforward to o
tain a set of coupled differential equations for the Lagran
multipliers:

dmkm

da
5gmkm2h(

i ,n
m in

]f in

]Rkm
2h(

i , j
n i j

]~c i j 1hy i j !

]Rkm
,

dnkl

da
52gnkl2h(

i ,n
m in

]f in

]Qkl
2h(

i , j
n i j

]~c i j 1hy i j !

]Qkl
,

~8!

as well as a set of boundary conditions

m in~a1!5
]eg

]Rin
U

a1

, n ik~a1!5
]eg

]Qik
U

a1

. ~9!

A separate equation is derived for the functional derivat
of Deg with respect tog, which we use for iteratively up-
datingg via gradient descent:

g~ t11!5g~ t !2udDeg /dg, ~10!

where

dDeg

dg
52(

i ,n
m inRin22(

i , j
n i j Qi j . ~11!

Heret is the iteration index andu is the learning rate for the
optimization process.
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All terms required for carrying out the optimization ofg
using Eq.~10! can be obtained by integrating the learni
dynamics in Eqs.~3! forward from some initial conditions
for the overlaps and then integrating the Lagrange multip
dynamics backward, using Eqs.~8! and the boundary condi
tions in Eq. ~9!. This process converges after a number
iterations and results in an exact function for the optim
weight decay over the time window.

We have employed this method to derive the optim
weight decay coefficient in several cases: structurally rea
able and overrealizable noiseless scenarios with optimal
small learning rates and structurally realizable and overr
izable noisy scenarios with optimal learning rates. For sm
learning rates our results support the conclusions of Sec
During the symmetric phase a very small or negative valu
chosen for the optimal weight decaygopt, indicating that
weight decay is at best useless and possibly detrimental
ing this phase. After the symmetric phasegopt quickly ap-
proaches zero, as required in order to achieve zero gene
zation error asymptotically.

For larger learning rates, however, we do find a posit
gopt that can shorten the symmetric phase significantly
both realizable and overrealizable learning scenarios. Fig
5~a! shows the optimal weight decay for an overrealiza
example (M52, K53) and the corresponding generaliz
tion error is shown by the solid line in Fig. 5~b!. The gener-
alization error for learning in the absence of weight decay
shown as the dashed line in Fig. 5~b! and we see how the
weight decay results in a shortened symmetric phase.
expected,gopt falls quickly to zero as the generalization err
converges towards zero. The learning rate chosen in this
ample (h50.7) is close to the optimal value in the absen

FIG. 5. Optimal time-dependent weight decay is shown in~a!
for an overrealizable noiseless learning scenario withM52, K53,
andh50.7. The corresponding generalization error is shown by
solid line in ~b!, where it is compared to the generalization err
without weight decay~dashed line!.
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of weight decay~as determined by similar methods to tho
employed here for the determination ofgopt @14#! and we
therefore see that the inclusion of weight decay can resu
an improvement on the optimal performance of standard g
dient descent learning. Notice that we do not optimizeh and
g simultaneously here, as we are mainly concerned with
improvements due to weight decay given a fixed learn
rate schedule. Similar results are found for realizable lea
ing scenarios with large or near optimal learning rates.

The picture developed above is not significantly alter
by the inclusion of Gaussian output noise. Figure 6~a! shows
gopt for a structurally realizable task (M5K52) with noise
variances250.01. The learning rate is given its optim
time-dependent value in the absence of weight decay@shown
by the dotted line in Fig. 6~a!#, which is initially constant at
h.1.6 until a decay towards the end of the given time w
dow as required for the system to achieve optimal asympt
performance@14#. As in the previous example, Fig. 6~b!
shows a significant shortening of the symmetric phase w
compared to learning without weight decay. However, as
system escapes the symmetric phase and the weight d
drops to zero, the generalization error approaches the s
decay as in the absence of weight decay and there is
asymptotic improvement in performance.

V. CONCLUSION

In this paper we have examined the effects of a sim
regularizer, weight decay, under a statistical mechanics

e

FIG. 6. Optimal time-dependent weight decay is shown by
solid line in ~a! for a structurally realizable task (M5K52) with
examples corrupted by Gaussian output noise of variances250.01.
The learning rate~dashed line! is fixed at its optimal time-

dependent value in the absence of weight decay (h̃5h/10). The
corresponding generalization error is shown by the solid line in~b!,
where it is compared to the generalization error without wei
decay~dashed line!.
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scription of the learning process, which is exact in the lim
of large input dimension. General results are obtained fo
noiseless, isotropic, and structurally matched scenario th
most amenable to analysis~a small learning rate is also as
sumed!. In this case we find no benefit in a fixed weig
decay, which results in a lengthened symmetric phase a
nonzero asymptotic generalization error. In fact, we iden
a critical value for the weight decaygmax above which the
student will never leave the symmetric phase, resulting
very poor performance. Analytical results for both phas
show this behavior to hold for general model complexityK
and we find thatgmax is inversely proportional toK for large
K. Numerical investigations also show that weight decay
not beneficial~in terms of either transient or asymptotic pe
formance! for small learning rates when the task bei
learned is overrealizable (K.M ) or corrupted by Gaussia
output noise.

In order to determine the behavior for arbitrary learni
rates we employ recent methods for determining optim
time-dependent parameters over a fixed time window@14#.
For small learning rates we find results consistent with
above discussion: The optimal weight decay paramete
very small and mostly negative during the symmetric pha
for realizable, overrealizable, and noisy learning scenar
However, for higher learning rates~we choose the optima
value in the absence of weight decay! a positive weight de-
cay is found to be beneficial during the symmetric pha
although we never find any benefit after specialization occ
,
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and for noisy learning the asymptotic performance is
improved upon. The shortened symmetric phase is due
nonlinear effects, which are not incorporated by our smalh
analysis.

Although we do identify a scenario in which weight dec
is slightly beneficial, this is probably of little value in prac
tice since in most situations we find fixed weight decay to
detrimental to performance, especially at late times. Oth
more principled, and presumably more successful, ada
tions to the basic gradient descent algorithm have been
gested for reducing the length of the symmetric phase~see,
for example, Ref.@16#!. This is not to say that weight deca
is useless in general, however, since we have only con
ered learning with examples drawn from an unlimited tra
ing set. One might expect some benefit during the asympt
phase of learning in the case where training examples
drawn with replacement from a fixed sample, since one t
has to deal with a fixed error surface and consequently o
fitting, resulting in a much richer optimization landsca
with many local minima.
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