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Learning with regularizers in multilayer neural networks
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We study the effect of regularization in an on-line gradient-descent learning scenario for a general two-layer
student network with an arbitrary number of hidden units. Training examples are randomly drawn input vectors
labeled by a two-layer teacher network with an arbitrary number of hidden units that may be corrupted by
Gaussian output noise. We examine the effect of weight decay regularization on the dynamical evolution of the
order parameters and generalization error in various phases of the learning process, in both noiseless and noisy
scenarios[S1063-651X98)13102-1

PACS numbsgs): 87.10:+e, 02.50-r, 05.90:+m

I. INTRODUCTION unit. The output of the student network is
a(J,§)=EiKzlg(Ji - &), whereg is the activation function of
One of the most powerful and commonly used methodshe hidden units, taken here to be the error function
for training large layered neural networks is that of on-lineq(x)=erf(x/\/2), andJ={J;};=;=« is the set of input-to-
learning, whereby the internal network parametgls are  pigden adaptive weights.
modified after the presentation of each training example so The components of the input vectcg¢ are uncorrelated

as to minimize the corresponding error. The goal is to bring ;1 om variables with zero mean and unit variance. Output
the mapf, |mplem~ented by the network as close as poss'bl‘:‘fabelsg“ are provided by a teacher network of similar archi-
to a desired mapf that generates the examples. Here Wegectyre: Hidden unit in the teacher network receives input
focus on the learning of continuous maps via gradient dentormation through the weight vect@, = (B, . .. BT

scent on a differentiable error function. and its activation under presentation of the input patggfn
Recent wor 1-5] provides a powerful tool for the analy- .

. . b . is yF=B,-£*. In the noiseless case the teacher output is
sis of gradient-descent learning in a very general Iearnln%. n Y u

scenarid 6]: that of astudentetwork withN input units,K iven by (o=, 9(Bn- £¥). _ _ _
hidden units, and a single linear output unit, trained to imple- 1€ error made by a student with weighton a given
ment a continuous map from airdimensional input spacgé  INPUt £ is given by the quadratic deviation

onto a scalar. Examples of the target tagkare in the form
of input-output pairs £#,{*). The output label* for each L 1K M 2
independently drawn inpui* is provided by aeachernet- _= a2 _
work of similar architecture, except that its numbdr of €(J,6.40)= 5[0, = &Hl"=3 21 90x) z‘l 9(yn)|
hidden units is not necessarily equalko D
Here we consider the effect of regularization on the learn-
ing process in the form of weight decay, for both noiseless
learning and the case where a noise process corrupts thgeasured here with respect to the noiseless tegareewill
teacher output. Learning from corrupted examples is a reaklso consider teachers corrupted by output noise, in which
istic and frequently encountered scenario and is commonlggse deviations are with respect to the actual noisy odfput
handled by some sort of regularization. Previous analysis ofhe performance on a typical input in the absence of noise
noisy training scenarios and the application of regularizationyefines the generalization erroe,(J)=(e(J,£ {o))ig s
have been based on various approaches: Bay€glarqui-  hrough an average over all possilgle input vecdr® be
librium statistical physic$8], and nonequilibrium techniques performed implicitly through averages over the activations
for analyzing learning dynamid®]. Here we adapt our pre- x=(Xq, ... )T and y=(yy, ... yy)". These averages

\é!]?fusly Iormulated tichr_nque{Q] t(ir:nvgstlgatg trlle efflect:_t of f(:an be performed analyticallj2] and result in a compact
literent noise mechanisms on the dynamical evolution Oexpression foky in terms oforder parametersQ;, = J;- Ji,

the learning process and the resulting generalization abiIityR_ —J-B,, and T,.=B,-B,,, which represent student-
n— i n» nm— ~n m?

student, student-teacher, and teacher-teacher overlaps, re-

spectively. The parametels,,, are characteristic of the task

to be learned and remain fixed during training, while the
We focus on asoft committee machinfd], for which all ~ overlapsQ;, among student hidden units ai}, between

hidden-to-output weights are positive and of unit strengthstudent and teacher hidden units are determined by the stu-

Consider the student network: Hidden uniteceives infor- dent weights) and evolve during training.

mation from input unitr through the weightJ;,, and its A gradient descent rule for the update of student weights

activation under presentation of an input patternresults in JHrI=Jr+ (9IN) 5*&*, where the learning

E=(&p,....&) " is x;=J;- & with J;=(J;1, ... Jiy)" de- rate  has been scaled with the input siZ¢, and

fined as the vector of incoming weights to thth hidden 5{’“59’(x{‘)[2r’\,"zlg(yﬁ)—Eleg(xj")]. The time evolution

1. MODEL
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FIG. 1. Order parameter's evolution for low weight decgy 0.005[(a),(c), and @)y<7yma and high weight decay=0.007
[(b) 7> Ymad fOr a noiseless scenario with=M =3 and»=0.2. (a) and(b) show the evolution of student vector lengths and overlaps and
(c) and (d) the overlaps between student and teacher vectors and the evolution of the generalization error, respectively.

and the resulting equations of motion for the student-teacher

of the overlapsR;, and Q;, can be written in terms of dif-
and student-student overlaps are given in this case by

ference equations. We consider the lahgydimit and intro-

duce a normalized number of examples /N to be inter-
: . . . -y dR
preted as a continuous time variable in thie> o limit. The " b — VR,
time evolution ofR;, andQy is thus described in terms of a da n ne 3
coupled set of first-order differential equatidrd. )
dQix

da Mkt 7°vik—2YQik,

Ill. EFFECT OF REGULARIZERS
where ¢, =(5Yn)a Ii=(6Xkt dXi)g,  and

A common method to overcome the effects of noise a.anikE(5i (s~ The explicit expressiong2] for ¢in, ik,
parameter redundancy, frequently used in real world training,  ande, depend exclusively on the overla@s R, andT.
scenarios, is the use of regularizers such as weight decay,q only gifference from the expressions in Ré&fl.is due to
[10]. The role of regularizers has been analyzed for lineag,e presence of the weight decay terms. These equations can
perceptron$11-13 and optimal values for regularizers have o olyed numerically as demonstrated in Fig. 1 for the re-
been calculated. However, the efficacy of regularizers fori,opje training scenario df =K =3, 7=0.2, and an iso-
on-line learning in multilayer networks is still somewhat un- tropic teacher Tpm= 8,,). The basic %eatures' of the dynam-

. .. . - nm n .
clear. The effect of weight decay on the training equations igeg for hoth noisy and noiseless learning exist here, i.e., a
the subtraction of a termy(N) Jf* in each weight update. ghort transient followed by a prolonged symmetric phase,

The difference equation fal* becomes characterized by lack of differentiation between different
nodes of the student, specialization, as each student node

begins to emulate a particular teacher node, and finally con-
7 vergence to asymptotic values. The weight decay applied in

prioguy T osugn_ Y qu
J It N oré N‘]' @ this casey=0.005[Figs. Xa), 1(c), and Xd)] has a negli-
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FIG. 2. Weight decay and trapping in the symmetric phéseModification of the eigenvalue controlling the escape from the symmetric
phase due to weight decay, as a function oK. (b) Maximal weight decay as a function &f.

gibleheffect o(;l thetlr?catitlnn of ]:[TE fixed poilpt i? the sym;r;]et- o 1 (2K +1)¥2(4K2— 7K +2)_

ric phase and on the value of the generalization error there; = - Y,
however, it does affect the length of the symmetric phase, VK(2K—=1) mK7H(2K~-1)(2K-3)

the convergence phase, and the asymptotic values of the or-

der parameters and generalization error. The asymptotic val- o = 1 2(2K+ 1)%44K2-6K+1)-

ues of the generalization error, the cross correlation between S 2K-1 m(2K —1)%3(2K — 3)K? v
vectors related to different node®i. ), and overlaps be- (4)
tween student vectors and teacher vectors imitated by differ- 1 2(2K +1)372 _

ent student vectorsR|.,) increase with the weight decay c*

= + ,
2K—1 " 7(2K—1)%2%2K—3)K2

|

It is interesting to note that weight decay does not modify the

while the length of the teacher vector®;() and overlaps
between student vectors and teacher vectors imitated by

them (R;;) decrease. Moreover, above a certain weight decay e _5
value ynax the system is trapped indefinitely in the symmet- ¢ om
ric subspace as shown in Figbl, for the student overlaps,

where a weight decay of=0.007 is used. These effects will o ) — ]
be analyzed in the following sections, although we are lim-generalization error to first order ip. For the case shown in

ited to the consideration of small learning rates. A different™'9- 1@, 1(¢), and 1d) (y=0.005) we evaluated the over-

P : : laps and the generalization error to obtdRf =0.2564,
approach is introduced in Sec. IV, which allows us to deter- ) .
PP *=0.1908, andC* =0.2005, in close agreement with the

mine the optimal weight decay as a function of time for
b g y |result presented above.

arbitrary learning rates. We first attempt to derive analytical A significant difference of the dynamics without weight

lr:;;::f] fo\:vi:[[t:] ea ?:%Twigrfflwke)ieT]?V(Ij%rc;um;?aﬁaei;]r pﬁgfiirﬁ(f_jecay is a notable reduction in the gap between the values of
arning, wit 9 Y P C Q andC in the symmetric phase, which may be attributed to
plicity we will concentrate here on a noiseless, realizabl

g . n , ) . Ghe suppression of excessive vector length by the weight de-
learning - scenario NI =K) with an isotropic teacher .oy mechanism. This inevitably leads to higher similarity

(T=bnm)- between student vectors and a delay in leaving the symmetric
phase.

To investigate the effect of weight decay on the length of
the symmetric phase we expanded the truncated dynamical
Introducing weight decay modifies the fixed point during equations, derived from Eqs3), around the fixed point
the symmetric phase. Followir@], we reduce the dimen- {R*,S*,Q*,C*} to obtain the eigenvalues that control the
sion of the system by exploiting symmetries in the dynamicglynamics of the system and escape from the symmetric
that exist for realizable, isotropic  learning: phasg. The dynar_nicql evolution Qescribed by the_ linearized
Qi =Q8,+C(1—4,) and R;,=R&,,+S(1—4,,), where equations of motion is Eharacterlzed by three eigenvalues,

each student node index coincides with that of the teache®ne of whichA=\q+ X\, is positive and controls the es-
node to which it will eventually specialize. One can thencape, where

calculate the location of the symmetric fixed point, for small

learning rates and small values of the regularization param- a 16K°—16K*—36K3+22K?+ 13K — 8

T 1

5 K arcsw(ﬁ

A. Symmetric phase

eter, by truncating Eq$3) to first order iny and expanding Ay= 2 2K2(2K +1)(2K—1)(2K —3)

with respect toy= y/ 5, regarding the solution with weight

decay as a small perturbation around the=0 result, andX\, is the eigenvalue obtained for the dynamics in the
S*=R*=1/yK(2K—-1) and Q*=C*=1/(2K—1). Solv- absence of weight decd®]. The dependence of, on the

ing the truncated equations results in the following expresnumber of hidden unitK is shown in Fig. 2a), approaching
sions for the new fixed point and generalization ern®=R  the asymptotic value of #/2 asK—«. The dependence on

at the symmetric fixed poijt the weight decay is negative, suppressing the eigenvalue re-
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FIG. 3. Asymptotic values for the overlaps in the c&se M =3 and»= 0.2 for various weight decay level&) predicted values foR
andQ (lines) against actual values obtained numericéfiguares and triangleand (b) predicted values fo andC (lines) against actual
values(squares and triangles

sponsible for escape from the symmetric phase. The system 6w(9+8\/§)(3K—6+2\/§)§ 2K

will escape from the symmetric phase for weight decay val- ea’ = (5)

ues lower thany ., where (111K — 159+ 563)

_ 8K3M(2K—3) To examine the accuracy of the results we plotted the

, predicted asymptotic values for the caBe=M=3 and
w2 \2K + 1(16K°— 16K*— 36K 3+ 22K2+ 13K — 8) 7=0.2 for various weight decay levels against the actual
) values obtained numerically as shown in Fig. 3: Fig)3
for which A =0. The dependence of., on the number of  shows predicted values fdR and Q against actual values
hidden unitsK is shown in Fig. ), which decays asymp- gptained numerically, while Fig.(B) presents predicted val-
totically as 1K@®. For the conditions of Fig. 1, i.e., yes forSandC against actual values. The results presented
K=M=3 and »=0.2, the maximal weight decay is in Fig. 3 show that the approximation for the asymptotic
7Ymax—0.006, in agreement with the numerical solutionsvalues forR, Q, S, andC is very accurate for low weight
shown there. decay values. Similarly, the predicted asymptotic value of
This analysis has been carried out for the case of smathe generalization error is in reasonable agreement with the
learning rate, which is most easily amenable to analysisnumerical result; e.g., the asymptotic generalization error
However, the more realistic case of larggfwhich includes, calculated forKk=M=3, »=0.2, and y=0.005 shows a
for example, the optimal learning ratis characterized by a value of e; =0.0193 in comparison to the numerical result
different behavior with respect tg. Analysing the largey 53 =0.01609.
case requires different tools and will be discussed in Sec. IV.

Ymax—

) ) C. Noisy examples and redundant parameters
B. Asymptotic regime
, ) i i , From the analysis of the role played by the weight decay
Asymptotlcally, in the realizable noiseless case with noj, the linear perceptron one would expect the weight decay
weight decay, the secondary overl&pandC decay to zero g gjieviate the problem of noisgl1,12 and to suppress
while R andQ approach unity, indicating full alignment for equndant parameteft3], reducing the generalization error.
an isotropic task Tnm=6ym). We observe that in the pres- \ye therefore examined the effect of weight decay on various
ence of weight decay the student vectors converge t@arning scenarios in which training examples are corrupted
asymptotic values that are shorter than the teacher vectorgy nojse and in the presence of redundant weights, for small
Qii—Q~<1, and acquire a positive correlation with each anq intermediate learning rates. Our numerical and analytical
other. Shorter norms for the student vectors result in a larggpyestigations have revealed no scenario, either when train-
asymptotic generalization error. _ . _ing from noisy data or in the presence of redundant param-
The asymptotic phase is characterized by a fixed poingters, where dixed weight decay improves the system per-
solution with R*#S*. The coordinates of the asymptotic formance in the long run or speeds up the training process.
fixed point can also be obtained analytically in the small- For the asymptotic regime, especially in the case of noiseless

approximation:R* =1+7yr,, S*=—-7 s,, Q*=1+q,, systems with redundant units, this is probably a generic fea-
andC* = —yc,, with ture of on-line learning with an infinite data set, due to the
absence of the numerous minima in the mean error surface,
1277(9+8\/§)(3K—6+2\/§) which might be caused by a finite training $e¢., the mean
Ma= ; error surface is the generalization error in our ¢ase off-

111K - 159+ 563 line (batch learning, or on-line learning with recycled pat-

terns, regularization may lead to improved performance
_ 18m(9+843) —or c.=2s through the modification of the error surface.
111K — 159+ 563" Ga=<Tar Ca=<Sa- To demonstrate the effect of weight decay on the evolu-
tion of the generalization error in the case of corrupted ex-
The asymptotic generalization error vanishes for the first oramples and in the presence of redundant parameters, we
der in y. Expanding the asymptotic order parameters to secshow in Fig. 4 two typical training scenarios where weight
ond order iny, one obtains for leading order in decay has been applied. We consider additive Gaussian out-

Sa
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FIG. 4. Effect of weight decay on the evolution of the generalization error in two training scen@ajiegere examples are corrupted
by output noise of zero mean and variance=0.1, in which casé/ =K =3, the learning rate used ig=0.2, and the weight decay values
vary betweeny=0.001 and 0.003, an¢) in a highly redundanfoverrealizablgtraining scenario wittM =3, K=5, and»=0.2.

put noise [4] so that the teacher output is Since the generalization error depends exclusively on the
{H=pt+ E,leg(Bng“), where the random variable* is  overlapsQ, R, andT, for which the dynamical equations are

taken to be Gaussian with zero mean and variarfce known, one can rewrite the integradi= dey/da as
The example shown in Fig.(d) represents a training sce-

nario wereM =K =3 and examples are corrupted by Gauss- £=Z deg dRi, +E deg dQy

ian output noise with variance®=0.1. It is clear that em- in IR, da  Tx Qi da

ploying weight decay, withy=0.001-0.003 in this example,

has only increased the asymptotic generalization error and N (%_ b+ YR )

delayed the breaking away from the symmetric phase. The ~ Hin|\"gq — 7%in Yhin

slight increase in generalization error during the symmetric
phase is due to higher-order effects, which are not analyzed -3, %_ Ui— PPvi+ 290, @

in this paper. Similar results have been obtained for different  Vik\Tdq MYk T VKT €Yk |-

types and levels of noise and weight decay, including weight

decay that varies in time according to hand-crafted schedFhe last two right-hand terms in Eq7) force the correct
ules. dynamics using sets of Lagrange multipliets, and v for

Figure 4b) shows an overrealizable training scenario inthe corresponding equationds®R,/da anddQ;y /de.
which a student with five hidden nodes is trained on uncor- Using variational techniques, it is straightforward to ob-
rupted examples generated by a three-node teacher. Tit@in a set of coupled differential equations for the Lagrange
learning rate in this case i§=0.2. Again it is clear that multipliers:
optimal performance is achieved with no regularizers.

Both these simulations used a rather low value for the d:“_km
learning rate, significantly lower than the optimal setting. In  da
the next section we observe how the behavior of weight de-
cay is significantly different during the symmetric phase for dy,,

din A ij + nvjj)
= YMkm— 77% Min IR - 77% Vij (9ka_’

_ B Iin A(ihij + nuij)
larger learning rates. da =2yvy 7li]2n Min 904 77% Vjj 90u ;
IV. GLOBALLY OPTIMAL WEIGHT DECAY ©
. . - . as well as a set of boundary conditions
In the previous sections we have been limited to using
fixed or hand-crafted weight decay terms that restrict our Je Je
ability to assess the potential contribution of general weight Min(ag)= aR-g , Vik(a1)=ﬁ 9
decay terms as only a limited number of conditions can be "May Kl oy

examined. In this section we take a different approach, aim- o . ) o
ing at global optimization of a time-dependent weight decayb‘ separa_te equation is derl\_/ed for the func_tlona_l derivative
term on the basis of previous work on globally optimal learn-Of A €g With respect toy, which we use for iteratively up-
ing rates[14] and learning rule§15]. dating y via gradient descent:

An optimal learning scenario with respect to some param-

eter(herevy) in a certain time window «g, 4] corresponds YD) =y(1) = 00A&/ 5y, (10
to the largest decrease in generalization error betweefnere
these two times; i.e., we attempt to minimize
Aey= e4(aq) — €4(@p), Which may be written as an integral SAe

g~ €gl®1) ™ €glo g
of the form: 5y — > winRin—22 1;Qj; - (11

Y i,n i
Aeg= albda. (6) Heret is the iteration index and is the learning rate for the

ap da optimization process.
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FIG. 5. Optimal time-dependent weight decay is show_niah FIG. 6. Optimal time-dependent weight decay is shown by the
for an overrealizable noiseless learning scenario With 2, K=3, solid line in (a) for a structurally realizable tasi{=K =2) with

and»=0.7. The corresponding generalization error is shown by th&,, mhjes corrupted by Gaussian output noise of variafiee0.01.
sc_)lld line |r_1 (b), where it is cqmpared to the generalization error The learning rate(dashed ling is fixed at its optimal time-
without weight decaydashed ling dependent value in the absence of weight decay ¢/10). The

All terms required for carrying out the optimization gf  corresponding generalization error is shown by the solid lind@)jn
using Eq.(10) can be obtained by integrating the learningwhere it is compared to the generalization error without weight
dynamics in Eqs(3) forward from some initial conditions decay(dashed ling

for the overlaps and then integrating the Lagrange multiplier : : -
: . .~ of weight decay(as determined by similar methods to those
?gg:"f‘f; b?gl)(w_?rr& u?cl)nc%s',zsqﬁ)ar?nedr tzg g?tg?daa?]/ (;?Qgr"ofemployed here for the determination ¢f, [14]) and we
i;eratiz)ns (lnd .resulltspin an exac;/ fugnction for thg o tir,naltherefore see that the inclusion of weight decay can result in
. : ; P an improvement on the optimal performance of standard gra-
weight decay over the time window.

We have employed this method to derive the optimald|ent descent learning. Notice that we do not optimjzand

) SO . v simultaneously here, as we are mainly concerned with the
weight decay coefficient in several cases: structurally realiz- : : . .
able and overrealizable noiseless scenarios with optimal an provements dl.Je.tO weight decay given a f|x_ed learning

X . rate schedule. Similar results are found for realizable learn-
small learning rates and structurally realizable and overreal-

. : ! . X ; |ng scenarios with large or near optimal learning rates.
izable noisy scenarios with optimal learning rates. For smal

learning rates our results support the conclusions of Sec. Il The picture developed above is not significantly altered
ning ; PP : ' .lby the inclusion of Gaussian output noise. Figu¢a 8hows
During the symmetric phase a very small or negative value is

. i Lo Yopt fOr @ structurally realizable taskM(= K =2) with noise
chqsen for th.e optimal weight decay, '|nd|catmg that variance 0?=0.01. The learning rate is given its optimal
weight decay is at best useless and possibly detrimental duy- . .

. ; . . ime-dependent value in the absence of weight déshgwn
ing this phase. After the symmetric phagg, quickly ap-

proaches zero, as required in order to achieve zero generaﬁ{the dOtt.?d I(ljne In Fig. (&()j]’ V\r/]h'Ch :js wfnt;}ally constant at
zation error asymptotically. 7n=1.6 until a decay towards the end of the given time win-

For larger learning rates, however, we do find a positivedOW as required for th? system to _achieve optimal a_symptotic
2t can shoren e Symmenc phase sgnfcanty o TS 1 0 e v mempl: Fo®
both realizable and overrealizable learning scenarios. Figur@ompared ?o learning without%veight deycay How2ver as the
5(a) shows the optimal weight decay for an overrealizable : ; e
e§<e)1mple V=2 Kp:3) andgthe corrc)a/sponding generaliza- system escapes the symmetric phase and the weight decay

tion error is shown by the solid line in Fig(5. The gener- drops to zero, the generalization error approaches the same

alization error for learning in the absence of weight decay isdecay as in the absence of weight decay and there is no

shown as the dashed line in Figlbh and we see how the asymptotic improvement in performance.
weight decay results in a shortened symmetric phase. As
expected;yqy falls quickly to zero as the generalization error

converges towards zero. The learning rate chosen in this ex- In this paper we have examined the effects of a simple
ample (p=0.7) is close to the optimal value in the absenceregularizer, weight decay, under a statistical mechanics de-

V. CONCLUSION
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scription of the learning process, which is exact in the limitand for noisy learning the asymptotic performance is not
of large input dimension. General results are obtained for @mproved upon. The shortened symmetric phase is due to
noiseless, isotropic, and structurally matched scenario that isonlinear effects, which are not incorporated by our small-
most amenable to analysia small learning rate is also as- analysis.
sumed. In this case we find no benefit in a fixed weight  Although we do identify a scenario in which weight decay
decay, which results in a lengthened symmetric phase and;ja s|ightly beneficial, this is probably of little value in prac-
nonzero asymptotic generalization error. In fact, we identifytice since in most situations we find fixed weight decay to be
a critical value for the weight decaymax above which the  getrimental to performance, especially at late times. Other,
student will never leave the sy_mmetrlc phase, resulting inygre principled, and presumably more successful, adapta-
very poor performance. Analytical results for both phasesgjons to the basic gradient descent algorithm have been sug-
show this behavior to hold for general model compleXty gested for reducing the length of the symmetric phizse,
and we find thatyn, is inversely proportional t& for large  for example, Ref[16]). This is not to say that weight decay
K. Numerical investigations also show that WE|ght decay ISS useless in generaL however, since we have On|y consid-
not beneficialin terms of either transient or asymptotic per- gred learning with examples drawn from an unlimited train-
formance for small learning rates when the task beinging set. One might expect some benefit during the asymptotic
learned is overrealizableK(>M) or corrupted by Gaussian phase of learning in the case where training examples are
output noise. drawn with replacement from a fixed sample, since one then
In order to determine the behavior for arbitrary learninghas to deal with a fixed error surface and consequently over-

rates we employ recent methods for determining optimafiting, resulting in a much richer optimization landscape
time-dependent parameters over a fixed time wind@#l.  with many local minima.

For small learning rates we find results consistent with the
above discussion: The optimal weight decay parameter is

very small and mostly negative during the symmetric phase, ACKNOWLEDGMENTS
for realizable, overrealizable, and noisy learning scenarios.
However, for higher learning ratgsve choose the optimal We would like to thank Sara A. Solla for useful discus-
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